Class 8 NCERT Maths Ex 14.1 Question 1.
1. Find the common factors of the given terms.
(i) 12x, 36
(ii) 2y, 22xy
(iii) 14 pq, 28p2q2
(iv) 2x, 3x2, 4
(v) 6 abc, 24ab2, 12a2b
(vi) 16 x3, – 4x2 , 32 x
(vii) 10 pq, 20qr, 30 rp
(viii) 3x2y3 , 10x3y2 , 6x2y2z
Solution:
(i) Factors of 12x and 36
12x = 2×2×3×x
36 = 2×2×3×3
Common factors of 12x and 36 are 2, 2, 3
and , 2×2×3 = 12
(ii) Factors of 2y and 22xy
2y = 2×y
22xy = 2×11×x×y
Common factors of 2y and 22xy are 2, y
and ,2×y = 2y
(iii) Factors of 14pq and 28p2q2
14pq = 2x7xpxq
28p2q2 = 2x2x7 x p x p x q x q
Common factors of 14 pq and 28 p2q2 are 2, 7 , p , q
and, 2x7xpxq = 14pq
(iv) Factors of 2x, 3x2and 4
2x = 2×x
3x2= 3×x×x
4 = 2×2
Common factors of 2x, 3x2 and 4 is 1.
(v) Factors of 6abc, 24ab2 and 12a2b
6abc = 2×3×a×b×c
24ab2 = 2×2×2×3×a×b×b
12 a2 b = 2×2×3×a×a×b
Common factors of 6 abc, 24ab2 and 12a2b are 2, 3, a, b
and, 2×3×a×b = 6ab
(vi) Factors of 16x3 , -4x2and 32x
16 x3 = 2×2×2×2×x×x×x
– 4x2 = -1×2×2×x×x
32x = 2×2×2×2×2×x
Common factors of 16 x3 , – 4x2 and 32x are 2,2, x
and, 2×2×x = 4x
(vii) Factors of 10 pq, 20qr and 30rp
10 pq = 2×5×p×q
20qr = 2×2×5×q×r
30rp= 2×3×5×r×p
Common factors of 10 pq, 20qr and 30rp are 2, 5
and, 2×5 = 10
(viii) Factors of 3x2y3 , 10x3y2 and 6x2y2z
3x2y3 = 3×x×x×y×y×y
10x3 y2 = 2×5×x×x×x×y×y
6x2y2z = 3×2×x×x×y×y×z
Common factors of 3x2y3, 10x3y2 and 6x2y2z are x2, y2
and, x2×y2 = x2y2
Class 8 NCERT Maths Ex 14.1 Question 2
2.Factorise the following expressions.
(i) 7x–42
(ii) 6p–12q
(iii) 7a2+ 14a
(iv) -16z+20 z3
(v) 20l2m+30alm
(vi) 5x2y-15xy2
(vii) 10a2-15b2+20c2
(viii) -4a2+4ab–4 ca
(ix) x2yz+xy2z +xyz2
(x) ax2y+bxy2+cxyz
Solution:
(i) 7x – 42 = 7(x – 6)
(ii) 6p – 12q = 6(p – 2q)
(iii) 7a2 + 14a = 7a(a + 2)
(iv) -16z + 20z3 = 4z(-4 + 5z2)
(v) 20l2m + 30alm = 10lm(2l + 3a)
(vi) 5x2y – 15xy2 = 5xy(x – 3y)
(vii) 10a2 – 15b2 + 20c2 = 5(2a2 – 3b2 + 4c2)
(viii) -4a2 + 4ab – 4ca = 4a(-a + b – c)
(ix) x2yz + xy2z + xyz2 = xyz(x + y + z)
(x) ax2y + bxy2 + cxyz = xy(ax + by + cz)
Class 8 NCERT Maths Ex 14.1 Question 3.
Factorise:
(i) x2 + xy + 8x + 8y
(ii) 15xy – 6x + 5y – 2
(iii) ax + bx – ay – by
(iv) 15pq + 15 + 9q + 25p
(v) z – 7 + 7xy – xyz
Solution:
(i) x2 + xy + 8x + 8y
Grouping the terms, we have
x2 + xy + 8x + 8y
= x(x + y) + 8(x + y)
= (x + y)(x + 8)
Hence, the required factors = (x + y)(x + 8)
(ii) 15xy – 6x + 5y – 2
Grouping the terms, we have
(15xy – 6x) + (5y – 2)
= 3x(5y – 2) + (5y – 2)
= (5y – 2)(3x + 1)
(iii) ax + bx – ay – by
Grouping the terms, we have
= (ax – ay) + (bx – by)
= a(x – y) + b(x – y)
= (x – y)(a + b)
Hence, the required factors = (x – y)(a + b)
(iv) 15pq + 15 + 9q + 25p
Grouping the terms, we have
= (15pq + 25p) + (9q + 15)
= 5p(3q + 5) + 3(3q + 5)
= (3q + 5) (5p + 3)
Hence, the required factors = (3q + 5) (5p + 3)
(v) z – 7 + 7xy – xyz
Grouping the terms, we have
= (-xyz + 7xy) + (z – 7)
= -xy(z – 7) + 1 (z – 7)
= (-xy + 1) (z – 1)
Hence the required factor = -(1 – xy) (z – 7)
Class 8 NCERT Maths Ex 14.2 Question 1
1. Factorise the following expressions.
(i) a2+8a+16
(ii) p2–10p+25
(iii) 25m2+30m+9
(iv) 49y2+84yz+36z2
(v) 4x2–8x+4
(vi) 121b2–88bc+16c2
(vii) (l+m)2–4lm (Hint: Expand (l+m)2 first)
(viii) a4+2a2b2+b4
Solution:
(i) a2+8a+16
= a2+2×4×a+42
Using the identity (x+y)2 = x2+2xy+y2
= (a+4)2
(ii) p2–10p+25
= p2-2×5×p+52
Using the identity (x-y)2 = x2-2xy+y2
= (p-5)2
(iii) 25m2+30m+9
= (5m)2+2×5m×3+32
= (5m+3)2
(iv) 49y2+84yz+36z2
=(7y)2+2×7y×6z+(6z)2
= (7y+6z)2
(v) 4x2–8x+4
= (2x)2-2×4x+22
= (2x-2)2
Using the identity (x-y)2 = x2-2xy+y2
(vi) 121b2-88bc+16c2
= (11b)2-2×11b×4c+(4c)2
= (11b-4c)2
Using the identity (x-y)2 = x2-2xy+y2
(vii) (l+m)2-4lm (Hint: Expand (l+m)2 first)
Expand (l+m)2 using the identity (x+y)2 = x2+2xy+y2
(l+m)2-4lm = l2+m2+2lm-4lm
= l2+m2-2lm
= (l-m)2
Using the identity (x-y)2 = x2-2xy+y2
(viii) a4+2a2b2+b4
= (a2)2+2×a2×b2+(b2)2
= (a2+b2)2
Using the identity (x+y)2 = x2+2xy+y2
Class 8 NCERT Maths Ex 14.2 Question 2
2. Factorise.
(i) 4p2–9q2
(ii) 63a2–112b2
(iii) 49x2–36
(iv) 16x5–144x3 differ
(v) (l+m)2-(l-m) 2
(vi) 9x2y2–16
(vii) (x2–2xy+y2)–z2
(viii) 25a2–4b2+28bc–49c2
Solution:
(i) 4p2–9q2
= (2p)2-(3q)2
= (2p-3q)(2p+3q)
Using the identity x2-y2 = (x+y)(x-y)
(ii) 63a2–112b2
= 7(9a2 –16b2)
= 7((3a)2–(4b)2)
= 7(3a+4b)(3a-4b)
Using the identity x2-y2 = (x+y)(x-y)
(iii) 49x2–36
= (7x)2 -62
= (7x+6)(7x–6)
Using the identity x2-y2 = (x+y)(x-y)
(iv) 16x5–144x3
= 16x3(x2–9)
= 16x3(x2–9)
= 16x3(x–3)(x+3)
Using the identity x2-y2 = (x+y)(x-y)
(v) (l+m) 2-(l-m) 2
= {(l+m)-(l–m)}{(l +m)+(l–m)}
Using the identity x2-y2 = (x+y)(x-y)
= (l+m–l+m)(l+m+l–m)
= (2m)(2l)
= 4 ml
(vi) 9x2y2–16
= (3xy)2-42
= (3xy–4)(3xy+4)
Using the identity x2-y2 = (x+y)(x-y)
(vii) (x2–2xy+y2)–z2
= (x–y)2–z2
Using the identity (x-y)2 = x2-2xy+y2
= {(x–y)–z}{(x–y)+z}
= (x–y–z)(x–y+z)
Using the identity x2-y2 = (x+y)(x-y)
(viii) 25a2–4b2+28bc–49c2
= 25a2–(4b2-28bc+49c2 )
= (5a)2-{(2b)2-2(2b)(7c)+(7c)2}
= (5a)2-(2b-7c)2
Using the identity x2-y2 = (x+y)(x-y) , we have
= (5a+2b-7c)(5a-2b+7c)
Class 8 NCERT Maths Ex 14.2 Question 3
3. Factorise the expressions.
(i) ax2+bx
(ii) 7p2+21q2
(iii) 2x3+2xy2+2xz2
(iv) am2+bm2+bn2+an2
(v) (lm+l)+m+1
(vi) y(y+z)+9(y+z)
(vii) 5y2–20y–8z+2yz
(viii) 10ab+4a+5b+2
(ix)6xy–4y+6–9x
Solution:
(i) ax2+bx = x(ax+b)
(ii) 7p2+21q2 = 7(p2+3q2)
(iii) 2x3+2xy2+2xz2 = 2x(x2+y2+z2)
(iv) am2+bm2+bn2+an2 = m2(a+b)+n2(a+b) = (a+b)(m2+n2)
(v) (lm+l)+m+1 = lm+m+l+1 = m(l+1)+(l+1) = (m+1)(l+1)
(vi) y(y+z)+9(y+z) = (y+9)(y+z)
(vii) 5y2–20y–8z+2yz = 5y(y–4)+2z(y–4) = (y–4)(5y+2z)
(viii) 10ab+4a+5b+2 = 5b(2a+1)+2(2a+1) = (2a+1)(5b+2)
(ix) 6xy–4y+6–9x = 6xy–9x–4y+6 = 3x(2y–3)–2(2y–3) = (2y–3)(3x–2)
Class 8 NCERT Maths Ex 14.2 Question 4
4.Factorise.
(i) a4–b4
(ii) p4–81
(iii) x4–(y+z) 4
(iv) x4–(x–z) 4
(v) a4–2a2b2+b4
Solution:
(i) a4–b4
= (a2)2-(b2)2
= (a2-b2) (a2+b2)
= (a – b)(a + b)(a2+b2)
(ii) p4–81
= (p2)2-(9)2
= (p2-9)(p2+9)
= (p2-32)(p2+9)
=(p-3)(p+3)(p2+9)
(iii) x4–(y+z) 4 = (x2)2-[(y+z)2]2
= {x2-(y+z)2}{ x2+(y+z)2}
= {(x –(y+z)(x+(y+z)}{x2+(y+z)2}
= (x–y–z)(x+y+z) {x2+(y+z)2}
(iv) x4–(x–z) 4 = (x2)2-{(x-z)2}2
= {x2-(x-z)2}{x2+(x-z)2}
= { x-(x-z)}{x+(x-z)} {x2+(x-z)2}
= z(2x-z)( x2+x2-2xz+z2)
= z(2x-z)( 2x2-2xz+z2)
(v) a4–2a2b2+b4 = (a2)2-2a2b2+(b2)2
= (a2-b2)2
= ((a–b)(a+b))2
= (a – b)2 (a + b)2
5. Factorise the following expressions.
(i) p2+6p+8
(ii) q2–10q+21
(iii) p2+6p–16
Solution:
(i) p2+6p+8
We observed that 8 = 4×2 and 4+2 = 6
p2+6p+8 can be written as p2+2p+4p+8
Taking Common terms, we get
p2+6p+8 = p2+2p+4p+8 = p(p+2)+4(p+2)
Again, p+2 is common in both the terms.
= (p+2)(p+4)
This implies that p2+6p+8 = (p+2)(p+4)
(ii) q2–10q+21
We observed that 21 = -7×-3 and -7+(-3) = -10
q2–10q+21 = q2–3q-7q+21
= q(q–3)–7(q–3)
= (q–7)(q–3)
This implies that q2–10q+21 = (q–7)(q–3)
(iii) p2+6p–16
We observed that -16 = -2×8 and 8+(-2) = 6
p2+6p–16 = p2–2p+8p–16
= p(p–2)+8(p–2)
= (p+8)(p–2)
So, p2+6p–16 = (p+8)(p–2)
Class 8 NCERT Maths Ex 14.3 Question 1
1. Carry out the following divisions:
i) 28x4 ÷ 56x
(ii) –36y3 ÷ 9y2
(iii) 66 pq2r3 ÷ 11qr2
(iv) 34x3y3z3 ÷ 51xy2z3
(v) 12a8b8 ÷ (-6a6b4)
Solution:
i) 28×4 ÷ 56x
28×4 = 2×2×7×x×x×x×x
56x = 2×2×2×7×x
28×4 ÷ 56x =
= =
(ii) –36y3 ÷ 9y2
-36y3 = – 2 × 2 × 3 × 3 × y × y × y
9y2 = 3 × 3 × y × y
-36y3 ÷ 9y2
=
= -4y
(iii) 66 pq2r3 ÷ 11qr2
66pq2r3 = 2 × 3 × 11 × p × q × q × r × r × r
11qr2 = 11 × q × r × r
66 pq2r3 ÷ 11qr2 =
= 6pqr
(iv) 34x3y3z3 ÷ 51xy2z3
34x3y3z3 = 2 × 17 × x × x × x × y × y × y × z × z × z
51xy2z3 = 3 × 17 × x × y × y × z × z × z
34x3y3z3 ÷ 51xy2z3 =
=
(v) 12a8b8 ÷ (-6a6b4)
12a8b8 = 2 × 2 × 3 × a8 × b8
-6a6b4 = -2 × 3 × a6 × b4
12a8b8 ÷ (-6a6b4) =
= -2a2b4
Class 8 NCERT Maths Ex 14.3 Question 2
2. Divide the given polynomial by the given monomial.
(i) (5×2–6x) ÷ 3x
(ii) (3y8–4y6+5y4) ÷ y4
(iii) 8(x3y2z2+x2y3z2+x2y2z3)÷ 4×2 y2 z2
(iv) (x3+2×2+3x) ÷2x
(v) (p3q6–p6q3) ÷ p3q3
Solution –
(i) (5×2 – 6x) ÷ 3x
(5×2 – 6x) = x(5x – 6)
(5×2 – 6x) ÷ 3x =
=
(ii) (3y8 – 4y6 + 5y4) ÷ y4
(3y8 – 4y6 + 5y4) = y4(3y4 – 4y2 + 5)
(3y8 – 4y6 + 5y4) ÷ y4 =
= 3y4 – 4y2 + 5
(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2
8(x3y2z2 + x2y3z2 + x2y2z3) = 8x2y2z2(x + y + z)
8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2 =
= 2(x + y + z)
(iv) (x3 + 2×2 + 3x) ÷ 2x
(x3 + 2×2 + 3x) = x(x2 + 2x + 3)
(x3 + 2×2 + 3x) ÷ 2x =
=
(v) (p3q6 – p6q3) ÷ p3q3
(p3q6 – p6q3) = p3q3 (q3 – p3)
(p3q6 – p6q3) ÷ p3q3 =
= q3 – p3
Class 8 NCERT Maths Ex 14.3 Question 3
3. Work out the following divisions.
(i) (10x–25) ÷ 5
(ii) (10x–25) ÷ (2x–5)
(iii) 10y(6y+21) ÷ 5(2y+7)
(iv) 9x2y2(3z–24) ÷ 27xy(z–8)
(v) 96abc(3a–12)(5b–30) ÷ 144(a–4)(b–6)
Solution –
(i) (10x – 25) ÷ 5
(10x – 25) = 5× 2 × x – 5 × 5
= 5(2x – 5)
(10x – 25) ÷ 5 =
= 2x – 5
(ii) (10x – 25) ÷ (2x – 5)
(10x – 25) = 5 × 2 × x – 5× 5
= 5(2x – 5)
(10x – 25) ÷ (2x – 5) =
= 5
(iii) 10y(6y + 21) ÷ 5(2y + 7)
10y(6y + 21) = 5 × 2 × y ×(2 × 3 × y + 3 × 7)
= 5 × 2 × y × 3(2 × y + 7)
= 30y(2y + 7)
10y(6y + 21) ÷ 5(2y + 7) =
= 6y
(iv) 9x2y2(3z – 24) ÷ 27xy(z – 8)
9x2y2(3z – 24) = 3 × 3 × x × x × y × y ×(3 × z – 2 × 2 × 2 × 3)
= 3 × 3 × x × x × y × y × 3( z – 2 × 2 × 2)
= 27x2y2(z – 8)
9x2y2(3z – 24) ÷ 27xy(z – 8) =
= xy
(v) 96abc(3a – 12)(5b – 30) ÷ 144(a – 4)(b – 6)
96abc(3a – 12)(5b – 30) = 96abc ×(3 × a – 2 × 2 × 3) × (5 × b – 5 × 2 × 3)
= 96abc × 3(a – 2 × 2)× 5(b – 2 × 3)
= 1440abc(a – 4)(b – 6)
96abc(3a – 12)(5b – 30) ÷ 144(a – 4)(b – 6) =
= 10abc
Class 8 NCERT Maths Ex 14.3 Question 4
4. Divide as directed.
(i) 5(2x+1)(3x+5) ÷ (2x+1)
(ii) 26xy(x+5)(y–4) ÷ 13x(y–4)
(iii) 52pqr(p+q)(q+r)(r+p) ÷ 104pq(q+r)(r+p)
(iv) 20(y+4) (y2+5y+3) ÷ 5(y+4)
(v) x(x+1) (x+2)(x+3) ÷ x(x+1)
Solution –
(i) 5(2x+1)(3x+5) ÷ (2x+1)
=
= 5(3x + 5)
(ii) 26xy(x + 5)(y – 4) ÷ 13x(y – 4)
=
= 2y(x + 5)
(iii) 52pqr (p + q)(q + r)(r + p) ÷ 104pq(q + r)(r + p)
=
=
(iv) 20(y + 4) (y2 + 5y + 3) ÷ 5(y + 4)
=
= 4(y2 + 5 y + 3)
(v) x(x +1)(x + 2)(x + 3) ÷ x(x +1)
= (x + 2)(x + 3)
Class 8 NCERT Maths Ex 14.3 Question 5
5. Factorise the expressions and divide them as directed.
(i) (y2+7y+10)÷(y+5)
(ii) (m2–14m–32)÷(m+2)
(iii) (5p2–25p+20)÷(p–1)
(iv) 4yz(z2+6z–16)÷2y(z+8)
(v) 5pq(p2–q2)÷2p(p+q)
(vi) 12xy(9×2–16y2)÷4xy(3x+4y)
(vii) 39y3(50y2–98) ÷ 26y2(5y+7)
Solution –
(i) (y2+7y+10)÷(y+5)
(y2+7y+10) = y2+2y+5y+10
= y(y+2)+5(y+2)
= (y+2)(y+5)
(y2+7y+10)÷(y+5) =
= y+2
(ii) (m2–14m–32)÷ (m+2)
m2–14m–32
= m2+2m-16m–32
= m(m+2)–16(m+2)
= (m–16)(m+2)
(m2–14m–32)÷(m+2) =
= m – 16
(iii) (5p2–25p+20)÷(p–1)
5p2–25p+20 = 5(p2 – 5p + 4)
= 5(p2 – p – 4p + 4)
= 5[p(p – 1) – 4(p – 1)]
= 5(p – 1)(p – 4)
(5p2–25p+20)÷(p–1) =
= 5(p–4)
(iv) 4yz(z2 + 6z–16)÷ 2y(z+8)
4yz(z2 + 6z -16) = 4 yz (z2 – 2z + 8z -16)
= 4 yz [z(z – 2) + 8(z – 2)]
= 4 yz(z – 2)(z + 8)
4yz(z2+6z–16) ÷ 2y(z+8) =
= 2z(z-2)
(v) 5pq(p2–q2) ÷ 2p(p+q)
5pq(p2 – q2) = 5pq(p–q)(p+q)
5pq(p2–q2) ÷ 2p(p+q) =
=
(vi) 12xy(9×2–16y2) ÷ 4xy(3x+4y)
12xy(9×2 -16y2) = 12xy[(3x)2 – (4y)2]
= 12xy(3x – 4y)(3x + 4y)
12xy(9×2–16y2) ÷ 4xy(3x+4y) =
= 3(3x – 4y)
(vii) 39y3(50y2–98) ÷ 26y2(5y+7)
39y3(50y2 – 98) = 3 × 13 × y × y × y × [2 × (25y2 – 49)]
= 3 × 13 × 2 × y × y × y × [(5y)2 – (7)2]
= 3 × 13 × 2 × y × y × y(5y – 7)(5y + 7)
26y2(5y + 7) = 2 × 13 × y × y × (5y + 7)
39y3(50y2–98) ÷ 26y2(5y+7) =
= 3y (5y – 7)
THANKS